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ABSTRACT

Recent coronal loop modeling has emphasized the importance of combining both Coulomb collisions and

turbulent scattering to characterize field-aligned thermal conduction, which invokes a hybrid loop model. In

this work we generalize the hybrid model by incorporating nonuniform heating and cross section that are both

formulated by a power-law function of temperature. Based on the hybrid model solutions, we construct scaling

laws that relate loop-top temperature (Ta) and heating rate (Ha) to other loop parameters. It is found that

the loop-top properties for turbulent loops are additionally power-law functions of turbulent mean free path

(λT ), with the functional forms varying from situation to situation that depends on the specification of the

heating and/or areal parameters. More importantly, both a sufficiently footpoint-concentrated heating and a

cross-sectional expansion with height can effectively weaken (strengthen) the negative (positive) power-law

dependence of Ta (Ha) on λT . The reason lies in a notable reduction of heat flux by footpoint heating and/or

cross-sectional expansion in the turbulence-dominated coronal part, where turbulent scattering introduces a

much weaker dependence of the conduction coefficient on temperature. In this region, therefore, the reduction

of the heat flux predominately relies on a backward flattening of the temperature gradient. Through numerical

modeling that incorporates more realistic conditions, this scenario is further consolidated. Our results have

important implication for solar active region (AR) loops. With the factors of nonuniform heating and cross

section taken into account, AR loops can bear relatively stronger turbulence while still keeping a physically

reasonable temperature for nonflaring loops.

Keywords: Solar active regions (1974), Solar corona (1483), Solar coronal loops (1485), Hydrodynamics (1963)

1. INTRODUCTION

It has been revealed by the extreme-ultraviolet (EUV)

and/or X-ray imaging observations from a variety of space-

borne missions (e.g., Kosugi et al. 2007; Kaiser et al. 2008;

Pesnell et al. 2012; Müller et al. 2020) that loop structures

constitute the bulk of magnetically closed solar corona. In

a low-β coronal atmosphere, magnetic fields not only deter-

mine the loop geometry, but also harbor energy that powers

the loop heating. Depending on the concentration and con-

nectivity of loop-hosting magnetic fields, coronal loops ap-

pear either as diffuse background over the quiet Sun, or like

discrete arcade-shaped features above active regions (ARs).

Appropriate modeling of these loops provides crucial infor-

mation on the configuration of coronal magnetic fields and

the nature of coronal heating (Martens 2010; Reale 2014;

Klimchuk & DeForest 2020).

Except for few transient brightening periods, nonflaring

coronal loops typically appear quasi-static or are just slowly
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evolving over most of their lifetime. To lowest order, this

leads to hydrostatic modeling of the loops. In a pioneer-

ing work, Rosner et al. (1978) studied the energy balance be-

tween optically thin radiative losses, volumetric heating, and

field-aligned thermal conduction in quasi-static loops, based

on which they established the well-known “Rosner–Tucker–

Vaiana (RTV)" scaling laws that relate the maximum temper-

ature (typically located at the loop apex) and heating rate of

a loop to its pressure and half-length. The RTV scaling laws

are of immense value, for their comparisons with observa-

tions can help us test the validity of simple static modeling

or otherwise incorporate new physics in more complex mod-

eling to reconcile with the observations.

In deriving the RTV scaling laws, it was assumed that the

conductive transfer of heat flux is controlled by collisional

scattering of thermal electrons. With such form of ther-

mal conduction, the model predicts a differential emission

measure (DEM) profile that decreases from coronal tempera-

tures and maintains a constant level through transition region

(TR) temperatures (Rosner et al. 1978). The DEM profile is

broadly consistent with observations at coronal temperatures,

but fails to reproduce the observed DEMs toward lower TR

http://arxiv.org/abs/2403.02110v1
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(< 105 K), where a large excess to the coronal level is re-

vealed (e.g., Raymond & Doyle 1981; Del Zanna & Mason

2018). The discrepancy could be reconciled by involving ex-

ternal structures such as cool low-lying loops and/or spicules

(e.g., Antiochos & Noci 1986; De Pontieu et al. 2011). One

can also incorporate new physics to affect the transport of

heat flux inside the loop, and consequently the shape of

DEM, both of which are directly related to temperature gra-

dient. Turbulent scattering, which arises from magnetic field

fluctuations within the loop, serves as a candidate mechanism

(Bian et al. 2016).

In explosive phenomena such as solar flares, strong tur-

bulence is self-consistently generated in reconnection cur-

rent sheets as well as in post-flare loops (e.g., Cheng et al.

2018; Wang et al. 2023). The turbulent scattering gives rise

to a variety of observational signatures, including nonther-

mal broadening of flare emission lines (e.g., Young et al.

2015; Li et al. 2018), prominent coronal sources observed in

hard X-ray bands (e.g., Masuda et al. 1994; Dai et al. 2010;

Guo et al. 2012). Due to the magnetic concentration in ARs,

it is believed that a certain level of turbulence is also present

in nonflaring AR loops. Emslie & Bradshaw (2022) have

recently developed a hybrid model for AR loops, where

Coulomb collisions and turbulent scattering dominate the

thermal conduction in different regimes of a loop. Based

on the model, temperature and DEM profiles are calculated

and scaling laws are derived, both of which show substantial

changes from the wholly collisional case. Owing to the sup-

pression of conduction coefficient by turbulent scattering, the

DEM with the hybrid model exhibits an increase toward low

temperatures, more compatible with observations. Neverthe-

less, the inclusion of turbulence also significantly elevates

the loop temperature (even to an unrealistically high level),

which seems to impose a strong constraint on the turbulence

strength in AR loops.

Both the original wholly collisional model of Rosner et al.

(1978) and the recent hybrid model of Emslie & Bradshaw

(2022) assume a uniform background heating and loop cross

section. In fact, the decay of coronal magnetic fields with

height implies that neither the volumetric heating nor the

cross section can keep constant along a loop. Such fac-

tors have been considered in several loop modeling works

(e.g., Vesecky et al. 1979; Serio et al. 1981; Winebarger et al.

2003; Martens 2010; Cargill et al. 2022). In the fame of

collision-dominated thermal conduction throughout the loop,

the results just show marginal modifications to the original

RTV scaling laws. When turbulent scattering is further in-

cluded, nevertheless, how will nonuniform heating and cross

section affect the loop characteristics in terms of the scal-

ing laws? In this work, we generalize the hybrid model of

Emslie & Bradshaw (2022) by incorporating both nonuni-

form heating and variable loop cross section, and construct

scaling laws for various situations. It is found that the func-

tional forms of the scaling laws depend on the specification

of the heating and/or loop areal parameters, and both a suffi-

ciently footpoint-concentrated heating and a cross-sectional

expansion with height can effectively weaken the depen-

dence of loop-top temperature on turbulence strength (quan-

tified by turbulent mean free path). The results have impor-

tant implication for AR loops, in which the former strong

constraint on turbulence strength in terms of loop tempera-

ture can be greatly relaxed.

The rest of the paper is organized as follows. We describe

the generalized hybrid model in Section 2 and deduce our

scaling laws in Section 3. The effects of nonuniform heating

and cross section are explored based on the hybrid model

solutions in Section 4 and numerically validated in Section

5. Finally, we discuss the results and draw our conclusions in

Section 6.

2. GENERALIZED HYBRID LOOP MODEL

We generalize the hybrid loop model of

Emslie & Bradshaw (2022) by incorporating both nonuni-

form heating and variable loop cross section. For a coronal

loop in hydrostatic equilibrium, the equation of energy con-

servation is expressed as

1

A

d

ds
(AFC) = ER + EH, (1)

where s is the distance along the loop measured upward

from the loop base, A is the loop cross-sectional area, FC =

−κdT/ds is the field-aligned heat flux with T being the loop

temperature and κ representing a model-dependent conduc-

tion coefficient, ER is the radiative losses from the loop, and

EH is the volumetric loop heating. Here we assume a semi-

circular loop with a full length of 2L, and due to the symme-

try, we consider only half of the loop, along which the tem-

perature monotonically increases from Tb at either footpoint

of the loop (s = 0) to Ta at the loop apex (s = L).

The coronal radiative losses are believed to be optically

thin, and hence are formulated as

ER = −n2
eΦ(T ), (2)

where ne is the electron number density and Φ(T ) is an opti-

cally thin radiative loss function. In analytical modeling the

radiation function is typically simplified as a single power-

law form of Φ(T ) = χ0T −γ , with χ0 being the proportional-

ity coefficient and γ (γ > 0) the slope. Further applying the

equation of state for fully ionized plasma P = 2nekBT (where

P denotes the gas pressure assumed to be uniform through-

out the loop for analytical convenience, and kB = 1.38×10−16

erg K−1 is the Boltzmann constant), the radiative loss term is

accordingly rewritten as

ER = −

χ0P2

4k2
B

T −(2+γ). (3)

As formulated in Martens (2010), the loop heating rate and

cross-sectional area are also assumed to follow a power-law

dependence on the temperature, i.e.,

EH = Ha

(

T

Ta

)α

, A = Aa

(

T

Ta

)δ

, (4)
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where Ha and Aa are the corresponding properties at the loop

apex, and indices α and δ (δ ≥ 0) quantify the degrees of

heating stratification and loop cross-sectional expansion, re-

spectively. Note that the particular case of α = 0 (uniform

heating) and δ = 0 (constant loop cross section) has been

modeled in Emslie & Bradshaw (2022).

Depending on the environmental conditions, the conduc-

tive transfer of the heat flux can be controlled by various

physical processes. In each process, a pertinent mean free

path λ is related to the conduction coefficient by

κ = 2nekBvthλ, (5)

where vth = (2kBT/me)
1/2 is the thermal velocity of electrons

with me = 9.1× 10−28 g being the electron mass. For ther-

mal conduction dominated by Coulomb collisions, the mean

free path is modeled with the Spitzer–Härm approximation

(Spitzer & Härm 1953; Spitzer 1962), which leads to a colli-

sional mean free path λC of

λC =
(2kBT )2

2πe4ne lnΛ
=

cRT 3

P
, (6)

where e = 4.8× 10−10 esu is the electron charge and lnΛ ≈
20 is the Coulomb logarithm. For simplicity we make the

identification cR = 4k3
B
/πe4 lnΛ ≈ 3.15× 10−12 erg cm−2 K−3

as used in Bradshaw et al. (2019). Substituting the form of

λC into Equation (5), it yields

κ =

(

2kB

me

)1/2

cRT 5/2 = κ0CT 5/2, (7)

where κ0C = (2kB/me)1/2cR = 1.73× 10−6 erg cm−1 s−1 K−7/2

is the classical Spitzer conductivity for collision-dominated

conduction (CDC).

In case of strong turbulence, the conductive heat trans-

port would be alternatively controlled by turbulent scatter-

ing (Bian et al. 2016; Emslie & Bian 2018). Following the

simplification made in Bian et al. (2018); Bradshaw et al.

(2019), we assume a constant turbulent mean free path λT

that is independent on the loop temperature and density. Then

the conduction coefficient for turbulence-dominated conduc-

tion (TDC) is formulated as

κ =

(

2kB

me

)1/2

λT PT −1/2 = κ0T T −1/2, (8)

where we make the identification κ0T = (2kB/me)1/2λT P for

simplicity. Note that κ0T is also a constant as we assume a

constant loop pressure P and turbulent mean free path λT

throughout the loop.

With the above two processes, the hybrid model com-

bines both a collision-dominated domain and a turbulence-

dominated domain within a single loop. In the lower part of

the loop where the collisional mean free path is short owing

to small values of the temperature, the thermal conduction is

dominated by collisions, with the conduction coefficient be-

ing determined by Equation (7). As the collisional mean free

path rapidly increases with temperature and finally exceeds

the turbulent mean free path, turbulent scattering will take

over in the upper part, and hence Equation (8) applies.

We first introduce the dimensionless temperature and co-

ordinate

θ =
T

Ta

, x =
s

L
. (9)

For the collision-dominated part, we define an auxiliary vari-

able η that is related to the temperature by

η = θ(7+2δ)/2, (10)

and two dimensionless parameters

ε1 =
8k2

B
κ0CT

(11+2γ)/2
a

(7 + 2δ)χ0P2L2
, ξ =

4k2
B
HaT 2+γ

a

χ0P2
. (11)

Then the energy equation for the collision-dominated part is

cast in a dimensionless form of

ε1

d2η

dx2
= ηµ1

− ξην1 , (12)

where

µ1 = −

2(2 +γ− δ)

7 + 2δ
, ν1 =

2(α+ δ)

7 + 2δ
. (13)

Multiplying with dη/dx on both sides, and applying the

boundary conditions of η = ηb = θ
(7+2δ)/2

b = (Tb/Ta)(7+2δ)/2 and

dη/dx = 0 (vanishing heat flux) at x = 0, the integration of

Equation (12) results in a first integral of

ε1

2

(

dη

dx

)2

=
ηµ1+1

− ηµ1+1
b

µ1 + 1
−

ξ(ην1+1
− ην1+1

b )

ν1 + 1
. (14)

On the other hand, by introducing another temperature-

related variable

ζ = θ(1+2δ)/2, (15)

and an additional dimensionless parameter

ε2 =
8k2

B
κ0T T

(5+2γ)/2
a

(1 + 2δ)χ0P2L2
, (16)

the dimensionless energy equation for the turbulence-

dominated part is similarly cast to

ε2

d2ζ

dx2
= ζµ2

− ξζν2 , (17)

where

µ2 = −

2(2 +γ− δ)

1 + 2δ
, ν2 =

2(α+ δ)

1 + 2δ
. (18)

Using the boundary conditions of ζ = 1 and dζ/dx = 0 (lo-

cal temperature maximum) at x = 1, the integration of Equa-

tion (17) yields another first integral of

−

ε2

2

(

dζ

dx

)2

=
1 − ζµ2+1

µ2 + 1
−

ξ(1 − ζν2+1)

ν2 + 1
. (19)
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The interface between the collision-dominated domain and

the turbulence-dominated domain lies at a dimensionless co-

ordinate of ℓ, at which the temperature is T0 (or θ0 = T0/Ta

in dimensionless form, and correspondingly converted to η0

and ζ0). By this definition, it is evident that

λT = λC(T0) =
cRT 3

0

P
=

cRT 3
a

P
θ3

0, (20)

which further leads to

κ0T

κ0C

= T 3
0 (21)

and

ε2

ε1

=
7 + 2δ

1 + 2δ
θ3

0 . (22)

Applying the boundary condition of continuous heat flux

(equivalent to continuous first derivative of temperature) at

θ = θ0, and substituting the above relations, we connect the

first integrals of the two domains (Equations (14) and (19)) at

the interface point, by which the eigenvalue of ξ is obtained

and explicitly expressed in a function of θ0 as

ξ =
6 − (3 − 2γ+ 4δ)θ

(3+2γ−4δ)/2

0 − (3 + 2γ− 4δ)(θb/θ0)(3−2γ+4δ)/2

6 − (7 + 2α+ 4δ)θ
−(1+2α+4δ)/2

0 + (1 + 2α+ 4δ)(θb/θ0)(7+2α+4δ)/2

×
(7 + 2α+ 4δ)(1 + 2α+ 4δ)

(3 − 2γ+ 4δ)(−3 − 2γ+ 4δ)
θ−(2+γ+α)

0 .

(23)

Once the value of ξ is determined, the two first integrals

can be directly integrated within their own domains, with the

results (η and ζ, which are eventually converted back to θ)

expressed in implicit functions of x as

x =

√

ε1

2

∫ η

ηb

[

ηµ1+1
− ηµ1+1

b

µ1 + 1
−

ξ(ην1+1
− ην1+1

b )

ν1 + 1

]

−1/2

dη

=

√

ε1

2
I1(η(θ)) =

√

ε1

2
I1(θ)

(24)

and

1 − x =

√

ε2

2

∫ 1

ζ

[

−

1 − ζµ2+1

µ2 + 1
+

ξ(1 − ζν2+1)

ν2 + 1

]−1/2

dζ

=

√

ε2

2
I2(ζ(θ)) =

√

ε2

2
I2(θ),

(25)

where we define the integrals

I1(θ) =

∫ η

ηb

[

ηµ1+1
− ηµ1+1

b

µ1 + 1
−

ξ(ην1+1
− ην1+1

b )

ν1 + 1

]

−1/2

dη (26)

and

I2(θ) =

∫ 1

ζ

[

−

1 − ζµ2+1

µ2 + 1
+

ξ(1 − ζν2+1)

ν2 + 1

]−1/2

dζ, (27)

respectively.

Applying Equations (24) and (25) at x = ℓ yields

ℓ =

√

ε1

2
I1(θ0) (28)

and

1 − ℓ =

√

ε2

2
I2(θ0). (29)

Further applying the relation between ε1 and ε2 (Equation

(22)), it is obtained that

ℓ =
I1(θ0)

I1(θ0) +

[

(7 + 2δ)/(1 + 2δ)
]1/2

θ
3/2

0 I2(θ0)
=

I1(θ0)

I(θ0)
, (30)

ε1 =
2ℓ2

I2
1 (θ0)

=
2

I2(θ0)
, (31)

and

ε2 =
2(7 + 2δ)

1 + 2δ

θ3
0

I2(θ0)
, (32)

where we make the identification

I(θ0) = I1(θ0) +

(

7 + 2δ

1 + 2δ

)1/2

θ
3/2

0 I2(θ0) (33)

for simplicity.

With the obtained eigenvalues of ξ, ε1, and ε2, the tempera-

ture profile of the loop is now completely determined, which

is implicitly formulated in a piecewise form of

x =















I1(θ)

I(θ0)
; θb ≤ θ ≤ θ0

1 −

(

7 + 2δ

1 + 2δ

)1/2
θ

3/2

0

I(θ0)
I2(θ); θ0 ≤ θ ≤ 1.

(34)

Furthermore, by translating the dimensionless eigenvalues to

dimensional ones (see Equation (11)), we obtain the loop-top

temperature and heating rate as

Ta =

[

(7 + 2δ)ε1

8

χ0

k2
B
κ0C

]2/(11+2γ)

(PL)4/(11+2γ) (35)

and

Ha =
ξχ0

4k2
B

P2

T
2+γ

a

. (36)

These two equations will serve as a basis for the following

deduction of loop scaling laws in various situations.
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3. SCALING LAWS FOR VARIOUS SITUATIONS

Based on the generalized hybrid model, loop scaling laws

of different forms are constructed for various situations. Here

we set a zero loop-base temperature for analytical conve-

nience. Since Tb ≪ Ta holds for typical coronal loops, the

specification of θb = 0 (ηb = 0) is physically reasonable.

3.1. The Collision-dominated Conduction Limit

In case of sufficiently strong collisions, the collision-

dominated part will be lengthened to occupy the entire loop,

which raises the value of θ0 to unity. At this CDC limit, the

hybrid model reduces to the single collisional model as pre-

viously explored in Martens (2010).

Since θ0 = 1, the originally complex expression of ξ (Equa-

tion (23)) becomes

ξ =
7 + 2α+ 4δ

3 − 2γ+ 4δ
=
ν1 + 1

µ1 + 1
, [C] (37)

and the definite integral I(θ0) (Equation (33)) consequently

reduces to

I(1) = I1(1) =

∫ 1

0

(

ηµ1+1
− ην1+1

µ1 + 1

)−1/2

dη

=
(µ1 + 1)1/2

ν1 −µ1

B

(

1 −µ1

2(ν1 −µ1)
,

1

2

)

=
[(7 + 2δ)(3 − 2γ+ 4δ)]1/2

2(2 +γ +α)

×B

(

11 + 2γ

4(2 +γ +α)
,

1

2

)

=

(

7 + 2δ

4φ

)1/2

, [C]

(38)

where B is the complete beta function, and we introduce the

auxiliary parameter

φ =
(2 +γ +α)2

3 − 2γ + 4δ

[

B

(

11 + 2γ

4(2 +γ +α)
,

1

2

)]

−2

(39)

for simplicity.

With the above value of I(1), Equation (31) becomes

ε1 =
8φ

7 + 2δ
, [C] (40)

and Equation (34) turns to

x = βr

(

θ2+γ+α;
11 + 2γ

4(2 +γ+α)
,

1

2

)

, [C] (41)

which represents the temperature profile in a regularized in-

complete beta function βr .

Substituting the values of ε1 and ξ into Equations (35) and

(36) gives

Ta =

(

φχ0

k2
B
κ0C

)2/(11+2γ)

(PL)4/(11+2γ) [C] (42)

and

Ha =
7 + 2α+ 4δ

4(3 − 2γ+ 4δ)φ

(

φχ0

k2
B
κ0C

)7/(11+2γ)

×κ0CP14/(11+2γ)L−4(2+γ)/(11+2γ), [C]

(43)

which are the generalized loop scaling laws for the CDC

limit. Note that the above formalism is largely the same as

that in Martens (2010). Here we mark the relevant equations

with a notation of “C" that stands for collisional situation.

Setting χ0 = 1.55× 10−19 erg cm3 s−1 K1/2 and γ = 1/2 in

the single power-law radiation function (e.g., Cox & Tucker

1969; Rosner et al. 1978), the CDC scaling laws for the spe-

cific case of α = 0 (uniform heating) and δ = 0 (constant loop

cross section) are cast to

Ta ≈ 1.3× 103(PL)1/3 K (44)

and

Ha(= EH) ≈ 1.2× 105P7/6L−5/6 erg cm−3 s−1, (45)

which correspond to the well-known RTV scaling laws (with

slight differences in proportional coefficients from the origi-

nal equations in Rosner et al. 1978).

It is worth pointing out that a valid definition of the beta

function in Equation (38) requires that (11 + 2γ)/4(2 + γ +

α) > 0, namely, α > −(2 + γ). It means that an equilib-

rium loop solution exists only when the background heat-

ing is not too concentrated near the loop base. Otherwise,

the equilibrium will be broken and the loop will enter into a

state of thermal nonequilibrium (TNE, Klimchuk et al. 2010;

Froment et al. 2018; Klimchuk & Luna 2019).

At the CDC limit, we combine Equations (6) and (42) to

evaluate the (maximum) collisional mean free path at the

loop apex, which gives a critical value of

λT c =

(

φχ0

k2
B
κ0C

)6/(11+2γ)

cR (PL)(1−2γ)/(11+2γ) L (46)

for the turbulent mean free path. Obviously the CDC limit

holds for λT ≥ λT c.

3.2. The Turbulence-dominated Conduction Limit

At the limit of λT → 0 (λT ≪ λT c), on the contrary, the

(dimensionless) interface temperature approaches zero, and

most part of the loop is dominated by turbulent scattering.3

Combining Equations (20) and (46) with the aid of Equations

(31) and (35), we can relate the normalized turbulent mean

free path λT/λT c (when λT/λT c ≤ 1) to θ0 by

λT

λT c

=

[

7 + 2δ

4φI2(θ0)

]6/(11+2γ)

θ3
0, (47)

3 The value of T0 (θ0) cannot decrease to zero, otherwise a singularity
will occur at the footpoint of the loop. This means that a loop with
a zero loop-base temperature must host a collision-dominated part, al-
though its extent could be extremely small. The constraint is relaxed in
case of a nonzero loop-base temperature, where the loop could be wholly
collision-dominated provided that the turbulent mean free path becomes
shorter than the collisional mean free path evaluated at the loop base (see,
Bradshaw et al. 2019).
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based on which loop scaling laws for the TDC limit could be

built in functions of λT .

At the TDC limit, the value of the definite integral I(θ0)

should be predominately determined by the turbulent part,

and is therefore approximated as

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2

θ
3/2

0 I2(θ0). (48)

Moreover, unlike the collisional integral I1(θ0) (see Equa-

tion (26)) where both µ1 + 1 = (3 − 2γ + 4δ)/(7 + 2δ) and

ν1 + 1 = (7 + 2α+ 4δ)/(7 + 2δ) are greater than zero, in the tur-

bulent integral I2(θ0) (see Equation (27)) , the indices µ2 +1 =

(−3 − 2γ + 4δ)/(1 + 2δ) and ν2 + 1 = (1 + 2α+ 4δ)/(1 + 2δ) can

be both greater than zero, both less than zero, or of oppo-

site signs. Therefore, with different specifications of the γ,

α, and δ values, the expression of ξ may have different func-

tional forms as θ0 asymptotically approaches zero, which will

consequently lead to to different forms of scaling laws.

The first situation is µ2 + 1 < ν2 + 1 < 0, namely, α ∈
(

−(2 +γ), −(1 + 4δ)/2
)

, which corresponds to a nonuniform

heating moderately concentrated near the loop footpoint. Un-

der this condition,

ξ ≈
(7 + 2α+ 4δ)(1 + 2α+ 4δ)

(3 − 2γ + 4δ)(−3 − 2γ+ 4δ)
θ−(2+γ+α)

0 [T1] (49)

for small values of θ0 (from Equation (23)). Since ξ ∝
ζµ2−ν2

0 → ∞ as θ0 → 0, the integrand in I2(θ0) is dominated

by the term involving ξ, and meanwhile the lower bound of

the integral can be tactically substituted with zero. Therefore,

Equation (48) becomes

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2

θ
3/2

0

∫ 1

ζ0

[

ξ(1 − ζν2+1)

ν2 + 1

]−1/2

dζ

≈
(

7 + 2δ

1 + 2δ

)1/2
θ

3/2

0

ξ1/2

∫ 1

0

(

1 − ζν2+1

ν2 + 1

)−1/2

dζ

=

[

−

7 + 2δ

(1 + 2δ)(ν2 + 1)

]1/2

B

(

ν2 − 1

2(ν2 + 1)
,

1

2

)

θ
3/2

0

ξ1/2

=

(

7 + 2δ

4φ1

)1/2

θ
(5+γ+α)/2

0 , [T1]

(50)

and Equation (31) becomes

ε1 ≈
8φ1

7 + 2δ
θ−(5+γ+α)

0 , [T1] (51)

where we define the auxiliary parameter

φ1 =
(7 + 2α+ 4δ)(1 + 2α+ 4δ)2

4(3 − 2γ+ 4δ)(3 + 2γ− 4δ)

×
[

B

(

−1 + 2α

2(1 + 2α+ 4δ)
,

1

2

)]

−2 (52)

for simplicity.

Relating Equation (50) to Equation (47) yields

θ0 ≈
(

φ1

φ

)

−2/(1−2α)(
λT

λT c

)(11+2γ)/3(1−2α)

, [T1] (53)

which reveals a power-law dependence of θ0 on λT . Using

this relation to substitute θ0 in Equations (49) and (51), and

inserting the results into Equations (35) and (36), the TDC

scaling laws for the case of moderately stratified footpoint

heating are formulated as

Ta ≈
(

φ1

φ

)2/(1−2α) (
φχ0

k2
B
κ0C

)2/(11+2γ)

(PL)4/(11+2γ)

×
(

λT

λT c

)

−2(5+γ+α)/3(1−2α)

[T1]

(54)

and

Ha ≈
(7 + 2α+ 4δ)(1 + 2α+ 4δ)

4(3 − 2γ+ 4δ)(−3 − 2γ+ 4δ)φ

(

φ1

φ

)2α/(1−2α)

×
(

φχ0

k2
B
κ0C

)7/(11+2γ)

P14/(11+2γ)L−4(2+γ)/(11+2γ)

×κ0C

(

λT

λT c

)

−(2+γ+7α)/3(1−2α)

. [T1]

(55)

The second situation is µ2 +1< 0<ν2 +1, which is equiva-

lent to δ ∈
(

−(1 + 2α)/4, (3 + 2γ)/4
)

∩ [0, +∞). It physically

implies a moderate expansion of the loop cross section with

height or uniform cross-sectional area throughout the loop

(only if α > −1/2). For this situation,

ξ ≈
6(1 + 2α+ 4δ)

(3 − 2γ + 4δ)(3 + 2γ− 4δ)
θ

−(3+2γ−4δ)/2

0 , [T2] (56)

which also approaches infinity with the decrease of θ0 but in

another power-law form proportional to ζµ2+1
0 . With the sim-

ilar approximations as made in the first turbulent situation,

the definite integral I(θ0) is accordingly evaluated as

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2
θ

3/2

0

ξ1/2

∫ 1

0

(

1 − ζν2+1

ν2 + 1

)−1/2

dζ

=

[

7 + 2δ

(1 + 2δ)(ν2 + 1)

]1/2

B

(

1

ν2 + 1
,

1

2

)

θ
3/2

0

ξ1/2

=

(

7 + 2δ

4φ2

)1/2

θ
(9+2γ−4δ)/4

0 , [T2]

(57)

where we make the identification

φ2 =
3(1 + 2α+ 4δ)2

2(3 − 2γ+ 4δ)(3 + 2γ− 4δ)

×
[

B

(

1 + 2δ

1 + 2α+ 4δ
,

1

2

)]

−2 (58)

for simplicity. Combining Equations (47) and (57), the de-

pendence between λT and θ0 then changes to

θ0 ≈
(

φ2

φ

)

−1/(1+2δ)(
λT

λT c

)(11+2γ)/6(1+2δ)

. [T2] (59)
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Consequently, the TDC scaling laws for the case of moderate

loop cross-sectional expansion turn out to be

Ta ≈
(

φ2

φ

)1/(1+2δ) (
φχ0

k2
B
κ0C

)2/(11+2γ)

(PL)4/(11+2γ)

×
(

λT

λT c

)

−(9+2γ−4δ)/6(1+2δ)

[T2]

(60)

and

Ha ≈
3(1 + 2α+ 4δ)

2(3 − 2γ+ 4δ)(3 + 2γ− 4δ)φ

(

φ2

φ

)

−(1+4δ)/2(1+2δ)

×
(

φχ0

k2
B
κ0C

)7/(11+2γ)

P14/(11+2γ)L−4(2+γ)/(11+2γ)

×κ0C

(

λT

λT c

)(3−2γ+28δ)/12(1+2δ)

. [T2]

(61)

The third situation is 0 < µ2 + 1 < ν2 + 1, that is, δ ∈
(

(3 + 2γ)/4, +∞
)

. In comparison with the second turbulent

situation, the current one represents a relatively stronger ex-

pansion of the loop cross section. Under this condition,

ξ ≈
1 + 2α+ 4δ

−3 − 2γ + 4δ
=
ν2 + 1

µ2 + 1
, [T3] (62)

which asymptotically approaches a constant value for small

values of θ0. With the approximately constant ξ value, all the

terms in the integrand of I2(θ0) are comparable, and hence

the definite integral I(θ0) is evaluated in a similar way to that

for the collisional case, which yields

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2

θ
3/2

0

∫ 1

0

(

ζµ2+1
− ζν2+1

µ2 + 1

)−1/2

dζ

=
[(7 + 2δ)(µ2 + 1)]

1/2

(1 + 2δ)1/2(ν2 −µ2)
B

(

1 −µ2

2(ν2 −µ2)
,

1

2

)

θ
3/2

0

=

(

7 + 2δ

4φ3

)1/2

θ
3/2

0 , [T3]

(63)

where we introduce the auxiliary parameter

φ3 =
(2 +γ +α)2

−3 − 2γ+ 4δ

[

B

(

5 + 2γ

4(2 +γ +α)
,

1

2

)]

−2

(64)

for simplicity. Combining Equations (47) and (63), it is ob-

tained that

θ0 ≈
(

φ3

φ

)

−2/(5+2γ)(
λT

λT c

)(11+2γ)/3(5+2γ)

. [T3] (65)

With this relation, Equations (35) and (36) finally reduce to

Ta ≈
(

φχ0

k2
B
κ0C

)2/(11+2γ)

(PL)4/(11+2γ)

×
(

φ

φ3

λT

λT c

)

−2/(5+2γ)

[T3]

(66)

and

Ha ≈
1 + 2α+ 4δ

4(−3 − 2γ+ 4δ)φ

(

φχ0

k2
B
κ0C

)7/(11+2γ)

×κ0CP14/(11+2γ)L−4(2+γ)/(11+2γ)

×
(

φ

φ3

λT

λT c

)2(2+γ)/(5+2γ)

, [T3]

(67)

which give the TDC scaling laws for the case of strong loop

cross-sectional expansion.

To discriminate the three different turbulent situations, we

assign the relevant equations with notations of “T1," “T2,"

and “T3," respectively. According to our classification, the

case of γ = 1/2, α = 0, and δ = 0 at the TDC limit be-

longs to situation T2. For this specific case, our Equations

(60) and (61) naturally reduce to the scaling laws derived in

Emslie & Bradshaw (2022, their Equations (46) and (47)) af-

ter some algebra. It is worth pointing out that their scaling

laws involve both λT and T0, which are mutually dependent

(see Equation (20)). With the relation between the two quan-

tities taken into account, our formalism should be more phys-

ically straightforward.

Finally, with the approximate expressions of ξ put into

I1(θ0), it is derived that I1(θ0) ∝ θ
(11+2γ)/4

0 for all three tur-

bulent situations. This results in ratios of I1(θ0)/I(θ0) (nor-

malized length of the collision-dominated part according to

Equation (30)) in proportion to θ
(1−2α)/4

0 (T1), θ
(1+2δ)/2

0 (T2),

and θ
(5+2γ)/4

0 (T3), respectively, all of which approach zero at

the TDC limit. Therefore, the validity of neglecting I1(θ0) in

Equation (48) is a posterior verified.

4. EFFECTS OF NONUNIFORM HEATING AND CROSS

SECTION ON TURBULENT LOOPS

4.1. Turbulent Solutions for Uniform Heating and Cross

Section

Before exploring the effect of nonuniform heating and

loop cross section on turbulent loop solutions, it is necessary

to first address how turbulent scattering affects a uniformly

heated loop with a constant cross section. Figure 1 plots such

hybrid model solutions of an isobaric coronal loop computed

for different turbulent mean free paths. The loop has a half-

length of 30 Mm and pressure of 0.55 dyne cm−2, typical of

an AR loop. As for the single power-law formed radiation

function, we set the index γ at a commonly adopted value

of 1/2. These parameters result in a loop-top temperature of

1.52 MK for the wholly collisional case (e.g., λT = ∞), as

well as a critical turbulent mean free path of λT c = 202 km.

Compared with the wholly collisional case, the inclusion

of turbulent scattering (when λT < λT c) increases the tem-

perature in the turbulence-dominated part, while in regions

below the interface point, the temperature profile is almost

unchanged (Figures 1a and 1b). This temperature enhance-

ment leads to both a decrease of the density (to keep the con-

stant loop pressure) and a sharpening of the temperature gra-

dient in the corona. As a result, the DEM profile, defined as

DEM(T ) = n2
e(dT/ds)−1, reveals a depletion in the corona rel-
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Figure 1. Hybrid model solutions of an isobaric coronal loop computed for different turbulent mean free paths (discriminated with different

colors and line styles), with the panels showing profiles of loop temperature (a and b), DEM (c), and heat flux (d), respectively. The loop has

a half-length of 30 Mm and constant pressure of 0.55 dyne cm−2. All the cases are powered by a spatially uniform heating (α = 0) and have a

constant cross section (δ = 0). The solid circle outlines the interface between the collision-dominated part and the turbulence-dominated part

for each case.

ative to that in the TR, especially for strong turbulence (Fig-

ure 1c). Note that based on the hybrid model solutions, the

DEM in the collision-dominated part is readily formulated as

DEM(T ) =
(3 − 2γ + 4δ)1/2

4kB

(

κ0C

χ0

)1/2

PT −(1−2γ)/4

×

[

1 −

3 − 2γ+ 4δ

7 + 2α+ 4δ
ξ

(

T

Ta

)2+γ+α
]

−1/2

.

(68)

With a γ value of 1/2 and the same specification of δ,

all DEM profiles will keep nearly the same flat level at
(

(1 + 2δ)κ0C/8χ0k2
B

)1/2
P for low enough temperatures, as

seen in Figure 1c as well as in Emslie & Bradshaw (2022,

their Figure 4).

The effect of turbulence can be understood as follows.

In case of TDC, the thermal conduction coefficient has a

much weaker (or even inverse) dependence on temperature

(κ∝ T −1/2, see Equation(8)) than that for CDC (κ∝ T 5/2, see

Equation(7)), leading to a suppression of the conduction co-

efficient in this regime. When turbulent scattering sets in, the

temperature gradient in the turbulence-dominated part must

be accordingly sharpened to maintain a relatively unchanged

heat flux (compared to the wholly collisional situation). As

shown in Figure 1d, the profiles of heat flux calculated for

the different turbulent mean free paths do closely resemble

each other over the entire loop, in sharp contrast to the wide

divergence of the coronal temperature profiles.

Figure 2 displays the magnitudes of energy terms for the

same loop modeled in Figure 1. In the corona, the balance

of energy is primarily between volumetric heating and con-

ductive losses. As expected, turbulent scattering significantly

reduces the radiative losses around the loop apex, but only

marginally affects the thermal conduction. This leads to a

slight depression of the loop heating rate, and meanwhile

the ratio of loop-top heating to radiation, i.e., the dimension-

less parameter ξ (from Equation (11)), increases significantly

with the decrease of λT . In passing we note that to the lower

part of the loop, the energy balance becomes predominately

between conductive gain and radiative losses. In this sense,

even a notable variation of the loop heating could barely in-

fluence the shape of temperature profile in this region (see

Figures 1a and 1b).

Although the inclusion of strong enough turbulent scatter-

ing can cause a relative excess of emitting materials in the

TR to those in the corona, more compatible with observa-

tions than the wholly collisional model, it also significantly

elevates the coronal temperature in case of uniform heating

and cross section. For the case of λT = 10 km shown in Figure

1, the loop apex has reached an unrealistically high tempera-

ture over 15 MK, which seems to impose a big challenge on

the viability of such strength of turbulence working in non-

flaring AR loops. However, as we will see, a nonuniform

heating and/or cross section may substantially alter the de-

pendence of loop temperature on turbulence strength.
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Figure 2. Magnitudes of energy terms for the same loop modeled in Figure 1, with different panels demonstrating the cases of different

turbulent mean free paths. In each panel, the red, green, and blue lines represent terms of heating (EH), conduction (EC), and radiation (ER),

respectively. In plotting the thermal conduction, we adopt different line styles to trace its transition from an energy loss term (dash-dotted) to a

gain term (dashed).

4.2. Effects of Nonuniform Heating and Cross Section

Figure 3 plots the variations of loop-top temperature and

heating rate versus turbulent mean free path for an isobaric

coronal loop with the same half-length and pressure as those

adopted in Figure 1. Here we fix the γ value at 1/2 as before,

and vary the values of α and δ to cover all three turbulent

situations. The loop properties are evaluated with the hybrid

model solutions (solid lines), CDC scaling laws (dash-dotted

lines), and TDC scaling laws (dashed lines), respectively.

For λT ≥ λT c, the hybrid model solutions are equivalent

to the CDC scaling laws (Equations (42) and (43)), where

the loop quantities are analytically determined irrespective

of λT . At the CDC limit, the loop quantities are not very sen-

sitive to the specification of α and/or δ, at least for the cases

plotted in the figure. Between the different cases, the val-

ues of Ta and Ha lie in narrow ranges of 1.21–1.52 MK and

6.01–7.53×10−4 erg cm−3 s−1, respectively. Even the resul-

tant critical mean free path (∝ T 3
a ) just varies within a factor

of two.

For λT < λT c, in contrast, the evolutions of the loop quan-

tities diverge significantly between the different cases. At

small values of λT (e.g., λT < 0.05λTc), this case-to-case

divergence is well characterized by the TDC scaling laws

(Equations (54–55), (60–61), and (66–67)), which give a ro-

bust estimate of the hybrid model solutions but use a more

simple and straightforward approach.

Compared with the conventional CDC scaling laws, the

TDC scaling laws are additionally power-law functions of

λT , with the functional forms varying from situation to sit-

uation. In Table 1 we categorize and list the power-law in-

dices of the various TDC scaling laws, including their gen-

eral forms as well as particular values computed with spec-

ified values of γ, α, and δ. For situation T1 (moderately

stratified footpoint heating), once the radiative loss function

is fixed, the power-law indices solely depend on α, while

the value of δ only influences the proportionality coefficients.

For situation T2 (moderate loop cross-sectional expansion),

the indices are determined by δ instead, with α just play-

ing a role in the proportionality coefficients. It is found

that both a decrease of sufficiently negative α (for situation

T1) and an increase of δ (for situation T2) can remarkably

weaken (strengthen) the negative (positive) power-law de-

pendence of Ta (Ha) on λT . It means that for a given turbu-

lence strength, the involvement of either a footpoint heating

or a cross-sectional expansion or both may effectively lower

the coronal temperature of a loop, as revealed in Figure 3a.

Here we emphasize on the behavior of Ta rather than Ha,
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parameters, which involve various turbulent situations (indicated in the legend). The solid circle depicts point of the critical turbulent mean free

path for each case.

Table 1. Conditions and Power-law Indices for the Various TDC Scaling Laws

Mathematical Power-law Index on λT Category

Condition Ta Ha Notation

α ∈
(

−(2 +γ), −(1 + 4δ)/2
)

−2(5 +γ +α)/3(1 − 2α) −(2 +γ + 7α)/3(1 − 2α)

γ = 1/2,α = −1,δ = 0 −1 1/2

γ = 1/2,α = −3/2,δ = 0 −2/3 2/3
T1

γ = 1/2,α = −3/2,δ = 1/4 −2/3 2/3

δ ∈
(

−(1 + 2α)/4, (3 + 2γ)/4
)

∩ [0, +∞) −(9 + 2γ − 4δ)/6(1 + 2δ) (3 − 2γ + 28δ)/12(1 + 2δ)

γ = 1/2,α = 0,δ = 0 −5/3 1/6

γ = 1/2,α = 0,δ = 1/2 −2/3 2/3
T2

γ = 1/2,α = −1,δ = 1/2 −2/3 2/3

δ ∈
(

(3 + 2γ)/4, +∞
)

−2/(5 + 2γ) 2(2 +γ)/(5 + 2γ)

γ = 1/2,α = 0,δ = 3/2 −1/3 5/6

γ = 1/2,α = −1,δ = 3/2 −1/3 5/6
T3

γ = 1/2,α = 0,δ = 2 −1/3 5/6

for the reason that loop temperature is a measurable quantity

whereas background heating is not. The effect of loop cross-

sectional expansion seems to saturate upon a certain degree.

For situation T3 when δ is sufficiently large, neither α nor δ
affects the power-law indices any more, and the dependence

between Ta and λT becomes the weakest.

Full loop solutions help better understand the effects of

nonuniform heating and cross section. Figure 4 plots hybrid

model solutions of the loop computed for the various heat-

ing and/or areal parameters together with a fixed λT value of

10 km. Compared with the case of uniform heating and cross

section, it is seen that both a footpoint-concentrated heating

and a cross-sectional expansion notably reduce the heat flux

in the corona (Figure 4d). The region of reduced heat flux

largely overlaps with the turbulence-dominated part, where

turbulent scattering introduces a much weaker (or even in-

verse) dependence of the conduction coefficient on tempera-

ture. Therefore, the reduction of the heat flux in this region

must be realized predominately by flattening the temperature

gradient. For the case of α = 0 and δ = 3/2, the loop-top tem-

perature has lowered to a warm coronal value of 2.78 MK,

much more physically reasonable than that (15.2 MK) for

α=0 and δ = 0 (Figures 4a and b). Meanwhile, the dominance

of turbulence in the corona ensures that a coronal depletion

(or TR excess) of DEM still survives in all cases (Figure 4c).

The physical reasons for the reduction of heat flux can be

understood as follows. First, the case of footpoint heating

means a redistribution of energy deposition, which removes

an amount of heating from the upper part of a loop and adds

it to the lower part. Since the balance of energy in the corona
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is primarily between heating and conductive losses (see Fig-

ure 2), the depletion of the coronal heating should be mainly

compensated for by a depression of downward transporting

heat flux (Klimchuk & Luna 2019). Second, for a loop with

nonuniform cross section, the term of thermal conduction EC

can be expanded as

EC = −

dFC

ds
− FC

d lnA

ds
, (69)

where the second term on the right hand side arises from the

variation of cross section. If the loop cross section expands

with height (d lnA/ds > 0), the contraction of cross section

inversely toward the loop base acts as a bottle neck to obstruct

the downward transport of heat flux (Antiochos & Sturrock

1976), whose effect is similar to an additional local heating

(Vesecky et al. 1979). Since the heat flux typically reaches

its maximum near the loop base (see Figures 1d and 4d), the

overall effect of the cross-sectional expansion is equivalent

to a footpoint heating, which in turns reduces the heat flux

from the corona.

5. NUMERICAL MODELING

We further resort to numerical loop modeling for a check of

the analytical modeling. Here we allow for a continuous tran-

sition between the importance of collisions and turbulence

(rather than the clear-cut division between them as assumed

in the analytical hybrid model), by which the mean free path

pertinent to thermal conduction is formulated as

λ =
λCλT

λC +λT

. (70)
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gΦ
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Figure 5. Radiative loss functions used for the numerical loop mod-

eling. The solid line represents the radiation function computed

with the CHIANTI atomic database, and the dashed line denotes

a piecewise power-law function that serves as an approximation of

the realistic CHIANTI function.

Moreover, the numerical modeling incorporates some other

physics inapplicable for the analytical modeling, including

gravitational stratification as well as improved functions of

radiation, heating, and cross-sectional area.

We adopt a piecewise power-law function formulated in

Klimchuk et al. (2008) as the radiative loss function for mod-

eling. As shown in Figure 5, this formalized function

serves as a quite good approximation of the “realistic" radi-

ation function computed with the CHIANTI atomic database

(Dere et al. 1997; Del Zanna et al. 2021). It is noted that the

piecewise function has been used in a variety of numerical
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approaches (e.g., Klimchuk et al. 2008; Cargill et al. 2012;

Bradshaw & Cargill 2013; Barnes et al. 2016).

To parametrize a nonuniform footpoint heating, we use an

exponential function

EH(s) = Hb exp

(

−

s

sH

)

, (71)

where Hb is the heating rate at the loop base and sH is the heat-

ing scale height. Compared with the explicitly temperature-

dependent heating function used in the analytical model-

ing, the current distance-dependent function seems more ap-

propriate in that the heating profile does not alter passively

with the change of temperature structure, hence being more

commonly used in numerical modeling (e.g., Serio et al.

1981; Aschwanden & Schrijver 2002; Ni et al. 2022). As

pointed out above, a heating too concentrated near loop base

(equivalent to a too small value of sH) may lead to TNE

inside a loop (Klimchuk et al. 2010; Froment et al. 2018;

Klimchuk & Luna 2019). Even without TNE, the loop un-

der such heating might be on the verge of thermal instability

(TI, Parker 1953; Winebarger et al. 2003; Klimchuk 2019).

According to the rule of thumb made by Klimchuk & Luna

(2019), we choose a heating scale height of 0.5L for the case

of footpoint heating, which yields a high enough degree of

heating stratification but still guarantees a thermally stable

equilibrium of the loop.

As for loop cross-sectional expansion, we also prefer an

explicitly distance-dependent areal function for numerical

modeling, although the adoption of temperature-dependent

ones makes the model possibly amenable to analytical solu-

tions (e.g., Levine & Pye 1980; Rabin 1991; Martens 2010).

We adapt the areal function used in Cargill et al. (2022) and

rewrite it into

A(s) = Ab

[

1 + (Γ− 1)sin2

(

πmin(s,sA)

2sA

)]

, (72)

where Ab is the cross-sectional area at the loop base, Γ

(Γ ≥ 1) is the expansion factor defined as the ratio of

apex to base cross-sectional areas, and sA (0 < sA ≤ L)

is a scale length localizing the cross-sectional expansion.

For large values of Γ and sA = L, the above areal func-

tion approximately depicts the cross-sectional variation of

a magnetic flux tube controlled by a line dipole (Antiochos

1980). Although the rapid decay of coronal magnetic fields

with height as revealed from magnetic modeling implies

a large cross-sectional expansion of coronal loops (e.g.,

Asgari-Targhi & van Ballegooijen 2012; Chen et al. 2022),

observations typically demonstrate a less-than-expected ex-

pansion for the loops: they either keep a roughly constant

cross section or just exhibit a modest cross-sectional ex-

pansion (e.g., Klimchuk 2000; Klimchuk & DeForest 2020;

Williams et al. 2021). To reconcile with the observations, we

set a moderate expansion factor of Γ = 5 (with the loop width

varying within a factor of
√
Γ ≈ 2.2) and a short expansion

scale length of sA = 0.2L (localized expansion near the loop

base). For comparison, we also model the case of sA = 0.8L

whose cross-sectional expansion extends over most portion

of the loop.

We consider a gravitationally stratified loop with a half-

length of 30 Mm as specified before. At the footpoint of

the loop, we set a pressure of Pb = 0.55 dyne cm−2 and tem-

perature of Tb = 2× 104 K (cf, Klimchuk & Mariska 1988;

Bradshaw & Cargill 2010), which yield a loop-base density

of 1× 1011 cm−3. Starting from the specified pressure and

temperature as well as vanishing heat flux at the bottom

boundary, we implement a shooting method to numerically

solve the one-dimensional hydrostatic equations that involve

the variations of pressure, temperature, and heat flux along

the loop. We iteratively adjust the value of loop-base heat-

ing rate (Hb) and integrate the equations until the resultant

heat flux vanishes at the loop apex too, from which other

loop-top properties such as Ta and Ha are returned at the

same time. The numerical integration incorporates a fourth-

order Runge–Kutta calculator and an adaptive mesh refine-

ment (with a refinement level up to 16) to improve the accu-

racy of the solutions.

Figure 6 displays numerical solutions of the loop com-

puted for different model parameters, with the panels orga-

nized the same as in Figure 4. Some representative input

parameters and output results for each model case are listed

in Table 2. As shown in the figure, the numerical solutions

are in general coincidence with the patterns already revealed

in the analytical modeling, except that the numerically de-

rived quantities vary more smoothly along the loop, a result

of the treatment of a smooth transition of λ. In comparison

to the wholly collision case with uniform heating and cross

section (CLUHUC), the inclusion of only strong turbulence

(with a λT of 10 km, TLUHUC) elevates the loop-top tem-

perature by even an order of magnitude (Figures 6a and b),

but just marginally affects the heat flux (Figure 6d). Nev-

ertheless, both a footpoint heating (TLFHUC) and a cross-

sectional expansion (TLUHEC) can effectively lower down

the unrealistically high coronal temperature by notably re-

ducing the heat flux in the turbulent corona. The effect is

more prominent for footpoint-localized cross-sectional ex-

pansion (TLUHEC2) than for global expansion (TLUHEC1),

because the former one corresponds to a higher relative ex-

pansion rate (d lnA/ds) near the loop base where the heat flux

peaks. An amalgamation of the footpoint heating and local-

ized cross-sectional expansion (TLFHEC) eventually reduces

the loop-top temperature to ∼3 MK, in good agreement with

the values observed in AR core loops (Del Zanna & Mason

2018). Finally, all the turbulent cases produce a depletion of

the DEM in the corona (Figure 6c), also consistent with the

observations.

6. DISCUSSION AND CONCLUSIONS

In this work we generalize the hybrid loop mode of

Emslie & Bradshaw (2022) by incorporating nonuniform

heating and cross section that are both characterized by a

power-law function of temperature. Based on the hybrid
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Figure 6. Numerical solutions of a gravitationally stratified coronal loop computed for different parameters (discriminated with different colors

and line styles), with the panels showing profiles of loop temperature (a and b), DEM (c), and heat flux (d), respectively. The detailed model

parameters are listed in Table 2. Note that the results are derived using the piecewise power-law radiative loss function.

Table 2. Representative Input Parameters and Output Results of the Numerical Modeling

Model Input Parameters Output Results

Namea L Pb λT sH Γ sA Ta
b Ha

b

(Mm) (dyne cm−2) (km) (L) (L) (MK) (×10−4 erg cm−3 s−1 )

CLUHUC 30 0.55 ∞ ∞ 1 · · · 1.52 (1.51) 6.89 (7.38)

TLUHUC 30 0.55 10 ∞ 1 · · · 16.3 (15.0) 4.00 (3.80)

TLFHUC 30 0.55 10 0.5 1 · · · 9.04 (8.38) 1.28 (1.22)

TLUHEC1 30 0.55 10 ∞ 5 0.8 7.61 (7.04) 1.23 (1.17)

TLUHEC2 30 0.55 10 ∞ 5 0.2 4.32 (4.62) 1.45 (1.59)

TLFHEC 30 0.55 10 0.5 5 0.2 2.97 (3.17) 0.568 (0.628)

a
Description of the abbreviations in model names: CL is for wholly collisional loop, TL for strongly turbulent loop, UH for uniform heating, FH for footpoint-
concentrated heating, UC for uniform loop cross section, and EC for expanding cross section with height.

b
Values outside (inside) parentheses denote results derived using the piecewise power-law (CHIANTI) radiative loss function.

model solutions, we construct scaling laws for various sit-

uations. With the inclusion of a turbulence-dominated part,

an accurate solution of the analytical hybrid model actually

involves a numerical evaluation of the finite integral I(θ0)

(Equation (33)). At the TDC limit, nevertheless, our scaling

laws (Equations (54–55), (60–61), and (66–67)) give a ro-

bust estimate of loop-top properties computed fully with the

analytical model but use a more simple and straightforward

approach (see Figure 3).

Compared with the “unified" scaling laws at the CDC limit

(Equations (42) and (43)), the TDC scaling laws show sub-

stantial changes. First, the loop-top properties are addition-

ally power-law functions of the turbulent mean free path,

with Ta (Ha) increasing (decreasing) with the decrease of λT .

Second and more importantly, their functional forms vary
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from situation to situation, whose classification depends on

the specification of the heating and/or areal parameters. It

is found that both a sufficiently footpoint-concentrated heat-

ing and a cross-sectional expansion with height can effec-

tively weaken (strengthen) the negative (positive) power-law

dependence of Ta (Ha) on λT (see Table 1 and Figure 3). In

this sense, the commonly modeled case of uniform heating

and cross section, which possesses the strongest functional

dependence between Ta and λT , may not adequately describe

the characteristics of a turbulent coronal loop.

Such new patterns revealed by the generalized TDC scal-

ing laws arise from a much weaker (or even inverse) de-

pendence of the conduction coefficient on temperature (κ ∝
T −1/2) that is introduced by turbulent scattering. Since heat

flux is the product of conduction coefficient and temperature

gradient, the suppression of the conduction coefficient needs

to be compensated for by a sharpening of the temperature

gradient if the heat flux remains relatively unchanged in the

turbulence-dominated part, as is the case of uniform heat-

ing and cross section (see Figure 1). On the other hand, in

case of footpoint heating and/or cross-sectional expansion,

the heat flux transporting downward from the corona is no-

tably reduced. If the region of reduced heat flux overlaps

with the turbulence-dominated part, the reduction of the heat

flux must predominately rely on a backward mitigation of

the temperature gradient (see Figure (4)). Through numeri-

cal modeling that incorporates more realistic conditions, the

above physical picture is further consolidated (see Figures

(6) and (8)).

In fact, the reduction of heat flux by footpoint heating

and/or cross-sectional expansion takes effect regardless of

collisional or turbulent situations (Klimchuk & Luna 2019;

Cargill et al. 2022). In case of a wholly collision-dominated

loop, a strong dependence of the conduction coefficient on

temperature (κ∝ T 5/2) implies that even a small adjustment

of the temperature can considerably alter the conduction co-

efficient, and consequently the heat flux. Therefore, a no-

table reduction of the heat flux in the corona just requires

a slight decrease of the coronal temperature, as revealed in

Figure 3a (loop-top temperatures at the CDC limit for vari-

ous heating and/or areal parameters). In this sense, the ef-

fects of footpoint heating and cross-sectional expansion be-

come more and more prominent as the turbulence strength

increases.

These results have important implication for loops in ARs,

where magnetic fields are locally concentrated. On one

hand, the concentration of magnetic fields facilitates the oc-

currence of strong enough turbulence in AR loops. Such

level of turbulence naturally results in a DEM profile ris-

ing toward low temperatures, more consistent with obser-

vations than that predicted by the wholly collisional model

(Gontikakis et al. 2023). Without the need of other com-

plex mechanisms, this simple turbulent scenario seems rather

compelling (Emslie & Bradshaw 2022). On the other hand,

the decay of magnetic fields with height implies a decrease

of background heating rate as well as an increase of cross-

sectional area toward the loop apex, both of which effec-

tively lower the sensitivity of loop temperature to turbu-

lence strength. Therefore, such AR loops can bear relatively

stronger turbulence while still keeping a physically reason-

able temperature for nonflaring loops.

It should be pointed out that our current modeling, both

analytical and numerical, is restricted in hydrostatic loops.

Bradshaw & Emslie (2020) have established scaling laws for

dynamic loops of uniform heating and cross section, finding

that the scaling laws for low Mach number flows just differ

slightly from the static case. In a next step work, we plan to

generalize the dynamic loop scaling laws by also incorporat-

ing nonuniform heating and cross section, whose effects will

be further investigated in terms of the Mach number of flows.

Even for highly dynamic loops (e.g., loops powered by

impulsive flare or nanoflare energy release) that undergo

heating–cooling cycles, an expansion of the loop cross sec-

tion with height should be still of physical significance. In

the first-stage conductive cooling, the cross-sectional expan-

sion suppresses the downward transport of heat flux and di-

lutes the evaporative flow to the corona (Reep et al. 2022),

while in the second-stage radiative cooling, it prevents the

evaporated materials from draining back to the chromo-

sphere until a catastrophic cooling occurs (Cargill et al. 2022;

Reep & Airapetian 2023). Both processes (that cause the re-

duction of both conductive and radiative losses) can account

for a longer-than-expected cooling time observed in some so-

lar flares (Ryan et al. 2013) without the need of additional

heating. Nevertheless, an in-depth investigation of such pro-

cesses is beyond the scope of this work.

Software procedures called to generate the analytical and

numerical solutions in this work are available from the au-

thors on request. The routines are coded with Interactive

Data Language (IDL), and we encourage users to run them

under the Solar Software (SSW, Freeland & Handy 1998)

environment.
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Program of Deep Space Exploration Laboratory under grant
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APPENDIX

A. TDC SCALING LAWS IN TERMS OF THE

TURBULENT KNUDSEN NUMBER

Using Equation (46), the TDC scaling laws presented in

Section 3.2 can be readily rewritten in terms of the turbu-

lent Knudsen number (λT/L, Bradshaw & Emslie 2020), a

parameter case independent. The adaptation does not change

the power-law dependence of the loop-top properties on λT .
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For situation T1 (µ2 + 1 < ν2 + 1 < 0),

Ta ≈
(

φ1χ0

k2
B
κ0C

)2/(1−2α)

(PL)2(1−γ−α)/3(1−2α)

×
(

1

cR

λT

L

)

−2(5+γ+α)/3(1−2α)

[T1]

(A1)

and

Ha ≈
(7 + 2α+ 4δ)(1 + 2α+ 4δ)

4(3 − 2γ+ 4δ)(−3 − 2γ+ 4δ)φ1

(

φ1χ0

k2
B
κ0C

)1/(1−2α)

×P(4−γ−7α)/3(1−2α)L−(2+γ−5α)/3(1−2α)

×κ0C

(

1

cR

λT

L

)

−(2+γ+7α)/3(1−2α)

. [T1]

(A2)

For situation T2 (µ2 + 1 < 0 < ν2 + 1),

Ta ≈
(

φ2χ0

k2
B
κ0C

)1/(1+2δ)

(PL)(3−2γ+4δ)/6(1+2δ)

×
(

1

cR

λT

L

)

−(9+2γ−4δ)/6(1+2δ)

[T2]

(A3)

and

Ha ≈
3(1 + 2α+ 4δ)

2(3 − 2γ+ 4δ)(3 + 2γ− 4δ)φ2

(

φ2χ0

k2
B
κ0C

)1/2(1+2δ)

×P(15−2γ+28δ)/12(1+2δ)L−(9+2γ+20δ)/12(1+2δ)

×κ0C

(

1

cR

λT

L

)(3−2γ+28δ)/12(1+2δ)

. [T2]

(A4)

For situation T3 (0 < µ2 + 1 < ν2 + 1),

Ta ≈
(

φ3χ0

k2
B
κ0C

)2/(5+2γ)

(PL)2/(5+2γ)

×
(

1

cR

λT

L

)

−2/(5+2γ)

[T3]

(A5)

and

Ha ≈
1 + 2α+ 4δ

4(−3 − 2γ+ 4δ)φ3

(

φ3χ0

k2
B
κ0C

)1/(5+2γ)

×P2(3+γ)/(5+2γ)L−2(2+γ)/(5+2γ)

×κ0C

(

1

cR

λT

L

)2(2+γ)/(5+2γ)

. [T3]

(A6)

B. SPECIAL TURBULENT SITUATIONS OF ν2 + 1 = 0

AND µ2 + 1 = 0

In addition to the three turbulent situations T1–T3, there

are two other special situations: µ2 + 1 < ν2 + 1 = 0 and 0 =

µ2 + 1 < ν2 + 1, respectively. For the situation of ν2 + 1 = 0,

the original form of the turbulent first integral (Equation (19))

needs to be modified to incorporate a logarithmic function of
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Figure 7. Variations of I(θ0) vs. θ0 for two combinations of γ, α,

and δ values. The case of γ = 1/2, α = −1/2, and δ = 0 (red) belongs

to the situation of ν2 +1 = 0, whereas the case of γ = 1/2, α = 0, and

δ = 1 (blue) is for the situation of µ2 + 1 = 0. The integral I(θ0) is

evaluated with the full hybrid model (solid) and the TDC approxi-

mation (dashed), respectively.

ζ. With this modification, the expressions of ξ and I2(θ0) now

become

ξ =
3
[

3 − (1 −γ−α)θ2+γ+α
0

]

θ−(2+γ+α)
0

(1 −γ −α)(2 +γ+α)(1 − 3lnθ0)
(B7)

and

I2(θ0) =

∫ 1

ζ0

(

−

1 − ζµ2+1

µ2 + 1
− ξ lnζ

)−1/2

dζ. (B8)

At the TDC limit (θ0 → 0), the parameter ξ is approximated

as

ξ ≈
9θ−(2+γ+α)

0

(1 −γ −α)(2 +γ+α)(1 − 3lnθ0)
, (B9)

and the finite integral I(θ0) (from Equation (48)) accordingly

reduces to

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2
θ

3/2

0

ξ1/2

∫ 1

0

(− lnζ)−1/2dζ

=

[

(7 + 2δ)π

1 + 2δ

]1/2
θ

3/2

0

ξ1/2

≈
[

(7 + 2δ)(1 −γ−α)(2 +γ+α)π

9(1 + 2δ)

]1/2

× (1 − 3lnθ0)1/2θ
(5+γ+α)/2

0 .

(B10)

For the situation of µ2 + 1 = 0, the expressions of ξ and

I2(θ0) are similarly modified to

ξ =
(2 +γ +α)(5 +γ+α)(1 − 3lnθ0)

3
[

(5 +γ +α) − 3θ2+γ+α
0

] (B11)

and

I2(θ0) =

∫ 1

ζ0

[

lnζ +

ξ(1 − ζν2+1)

ν2 + 1

]−1/2

dζ. (B12)
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Figure 8. The same as Figure 6, except that the solutions are derived using the CHIANTI radiative loss function.

At the TDC limit, the approximations of ξ and I(θ0) conse-

quently lead to

ξ ≈
2 +γ +α

3
(1 − 3lnθ0) (B13)

and

I(θ0) ≈
(

7 + 2δ

1 + 2δ

)1/2
θ

3/2

0

ξ1/2

∫ 1

0

(

1 − ζν2+1

ν2 + 1

)−1/2

dζ

=

[

7 + 2δ

(1 + 2δ)(ν2 + 1)

]1/2

B

(

1

ν2 + 1
,

1

2

)

θ
3/2

0

ξ1/2

≈
[

3(7 + 2δ)

2(2 +γ+α)2

]1/2

B

(

1 + 2δ

2(2 +γ+α)
,

1

2

)

×
θ

3/2

0

(1 − 3lnθ0)1/2
.

(B14)

The case of ν2 + 1 = 0 connects situations T1 and T2,

whereas the case of µ2 + 1 = 0 is the transition point be-

tween situations T2 and T3. Figure 7 plots the variations

of I(θ0) versus θ0 for two combinations of γ, α, and δ values,

which belong to the situations of ν2 + 1 = 0 and µ2 + 1 = 0,

respectively. The integral I(θ0) is evaluated with the full hy-

brid model (from Equation (33)) and the TDC approximation

(Equation (B10) or (B14)), respectively. For small values of

θ0, the simple TDC approximation gives an excellent esti-

mation of the finite integral I(θ0). However, the TDC ap-

proximation now involves an additional term of 1 − 3lnθ0,

which makes θ0 transcendental functions of λT (see Equation

(47)). Therefore, the construction of scaling laws in power-

law functions of λT , as done before, becomes unpractical for

both special situations.

C. NUMERICAL SOLUTIONS COMPUTED WITH THE

CHIANTI RADIATIVE LOSS FUNCTION

In the numerical modeling, we also construct loop solu-

tions using the “realistic" CHIANTI radiative loss function

(plotted as the solid line in Figure 5). The radiation func-

tion is calculated under an assumption of coronal elemen-

tal abundance (e.g., Schmelz et al. 2012), where the abun-

dances of elements with low first ionization potential (FIP)

exhibit an enrichment over the photospheric values (Meyer

1985; Feldman 1992). Figure 8 displays the numerical so-

lutions computed with the CHIANTI function. Compared

to Figure 6, it is seen that the CHIANTI-based solutions are

quantitatively in good agreement with those derived using the

piecewise radiation function. Taking the loop-top properties

(Ta and Ha) as a benchmark, the deviations between the two

sets of solutions are typically less than 10% (see Table 2).

This consistency validates the use of the piecewise power-

law function in common numerical modeling.
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